Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Decrease of radionuclide sorption in hydrated cement systems by organic ligands; Comparative evaluation using experimental data and thermodynamic calculations for ISA/EDTA-actinide-cement systems

Ochs, M.*; Dolder, F.*; Tachi, Yukio

Applied Geochemistry, 136, p.105161_1 - 105161_11, 2022/01

 Times Cited Count:4 Percentile:66.78(Geochemistry & Geophysics)

Various types of radioactive wastes and environments contain organic substances that can stabilize the aqueous complexes with radionuclides and therefore lead to a decrease of sorption. The present study focuses on testing a methodology to quantify sorption reduction factors (SRFs) in the presence of organic ligands for cement systems. Three approaches for the estimation of SRFs; (1) analogy with solubility enhancement factors, (2) radionuclide speciation based on the thermodynamic calculations, and (3) experimental sorption data in ternary systems, were coupled and tested for the representative organic ligands (ISA and EDTA) and selected key radionuclides (actinides). Our approach allows to critically evaluate the dependence of SRFs for various systems on the chosen method of quantification, in accordance with the data availability for a given systems. The reliable SRFs can only be derived from the sorption measurements in ternary systems. SRF often need to be derived in the absence of such direct evidence, and estimations need to be made based on analogies and speciation information. However, such estimates may be subject to substantial uncertainties.

Journal Articles

Sorption parameter setting approaches for radioactive waste disposal considering perturbation effects; Sorption reduction factors for organics

Tachi, Yukio; Ochs, M.*

Progress in Nuclear Science and Technology (Internet), 5, p.229 - 232, 2018/11

Various types of post-accident radioactive waste have been generated from cleanup and decommissioning activities at the Fukushima Daiichi Nuclear Power Plant. For the disposal of these wastes, perturbation effects resulting from co-existing substances (e.g., organic substances, boron, and salts) are needed to be considered. Such co-existing substances may influence on the radionuclide sorption parameters for the safety assessment of the disposal systems. The present study focuses on developing the methodology to quantify sorption parameters by considering such perturbation effects and illustrating example calculations regarding the sorption reduction factors (SRFs) due to the presence of organic ligands (ISA) for cement systems. Three approaches for the derivations of SRFs for cement-Am-ISA case were compared. These options should be applied as a stepwise manner according to the data availability for the perturbation effects resulting from the co-existing substances.

Journal Articles

Retention of uranium in cement systems; Effects of cement degradation and complexing ligands

Ochs, M.*; Vriens, B.*; Tachi, Yukio

Progress in Nuclear Science and Technology (Internet), 5, p.208 - 212, 2018/11

The clean-up activities related to the accident at the Fukushima Nuclear Power Plant give rise to several types of wastes containing cementitious materials, such as concrete. Further, the use of cement-based barriers may be considered, due to their favorable and stable chemical properties, including their ability to sorb or incorporate radionuclides. Wastes from Fukushima are expected to contain substances that can have perturbing effects on retention, especially organic complexing substances, boron, and chloride salts. The present study focuses on a methodology for quantifying the retention behaviour of UVI) and U(IV) in cement materials of different degradation and in the presence of organics, boron, and salts on the basis of available literature information. A stepwise approach is proposed and illustrated for Kd setting for U(VI) and U(IV).

Oral presentation

Estimation of sorption reduction by organic ligands in actinide-cement systems

Ochs, M.*; Dolder, F.*; Tachi, Yukio

no journal, , 

4 (Records 1-4 displayed on this page)
  • 1